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Abstract. We investigate Threshold Random Boolean Networks with K = 2 inputs per node, which are
equivalent to Kauffman networks, with only part of the canalyzing functions as update functions. According
to the simplest consideration these networks should be critical but it turns out that they show a rich variety
of behaviors, including periodic and chaotic oscillations. The analytical results are supported by computer

simulations.
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Self-organized systems

1 Introduction

Random Boolean networks (RBN) were introduced by
Stuart Kauffman in 1969 [1,2] to model the dynamics
of genetic and metabolic networks [3], but they are also
used in a social and economic context [4,5], and for neu-
ral networks. Although Boolean models represent a strong
simplification of the far more complex reality, there exist
several examples where the modelling of a genetic net-
work by Boolean variables captures correctly the essential
dynamics of the system [6-8]. For this reason, the study
of RBNs remains an important step on the way towards
understanding real networks.

In a RBN, the nodes have only two possible states,
“on” and “off”. Each node is assigned at random a set of
nodes from which it receives its inputs, and an updating
rule. All nodes are updated in parallel. Kauffman classified
the dynamics of RBNs according to whether it is chaotic
or frozen or critical (as described in the review [9]).

1. In a frozen network, all nodes apart from a small num-
ber (that remains finite in the limit of infinite system
size) assume a constant value after a transient time.
If two identical systems are started in a different ini-
tial state, the states of all nodes apart from a finite
number become identical after the transient time. If in
the stationary state the value of one node is changed,
this perturbation propagates during one time step on
average to less than one other node.

2. In a chaotic network, attractors of the dynamics are
long, and a nonvanishing proportion of all nodes keep
changing their state even after long times. If two iden-
tical systems are started in a different initial state,
the states of a nonvanishing proportion of all nodes
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remain different even after long times. If in the sta-
tionary state the value of one node is changed, this
perturbation propagates during one time step on aver-
age to more than one other node.

3. Critical networks are at the boundary between these
two types of behavior, with a perturbation of one
node propagating on average to one other node. There-
fore the difference between two almost identical initial
states increases like a power law in time. The num-
ber of nodes that are not frozen on all attractors in-
creases in a critical network as a power law ~N2/3 of
the system size N, as was found numerically in [10]
and analytically in [11,12].

This simple classification was made for networks in which
all possible Boolean functions occur. The mean-field cal-
culation that is usually performed for deciding to which
class a network belongs, is based on the assumption that
the proportion of nodes in the “on” (or “off”) state be-
comes a constant for long times.

However, this need not be the case. In fact, for some
types of Boolean networks the proportion of nodes in the
“on” state has been shown to display more complicated
temporal behaviour. When a parameter is varied, period-
doubling cascades and chaos are found in networks where
all nodes with the same number of inputs are assigned the
same Boolean function [13-15].

In this paper, we want to build a bridge between RBNs
with constant proportions of “on” nodes, and between
Boolean networks with only one type of functions and
more complicated dynamics of the proportion of “on”
nodes. We study a rather simple class of RBNs and inves-
tigate in more detail its dynamical behaviour. In our net-
works, there occur different Boolean functions, the weights
of which can be varied by tuning a parameter. We do not
only study the time evolution of the number of “on” nodes,
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but also the attractors of the networks. We find a frozen
and a chaotic phase (according to Kauffman’s classifica-
tion), and a regime with an oscillation of period 2 in the
number of “on” nodes. Interestingly, within this regime,
there is an additional phase transition from a phase with
attractors of period 2 to a phase with very long attrac-
tors. Our results indicate that the dynamics of RBNs are
in general much richer than what has been reported so
far.

1.1 The model

We model a random Boolean network as a directed graph
with randomly chosen links between N binary nodes, each
of which has K inputs. We denote the state of a node with
0; = £1 (we call +1 “on” and —1 “off”). Each node i is
assigned at random an update function f;. In this paper,
we focus on the case K = 2 and on threshold functions

fi=sign [ h+ Zojcij = sign (s;) (1)
J

where the sum is taken over the two input nodes for node i.
The value ¢;; = —1 stands for inhibitory connections and
cij = 1 for excitatory connections. (This version of RBN
was used for instance in [16] with a threshold value h =
0.) A connection is excitatory with probability p; and
inhibitory with probability 1 —p,. We set the value of the
threshold to h = 0. Since each of the two input connections
can be excitatory or inhibitory, the model has 4 different
update functions, which are listed in Table 1 together with
their weights.

In agreement with other authors, we define
sign(0) = 1. Threshold functions are used not only
in the context of neural networks, but also in models
for markets [17] and for genetic networks [7,16,18]. The
functions listed in Table 1 represent four of the 12 canal-
izing update functions of Kauffman networks. Canalyzing
functions are those non-frozen functions where at least
one value of a given input can fix the output of a node,
irrespective of the value of the second input. All nodes
are updated in parallel according to the rule

oi(t+1) = fi({o;()}) = fi(oi, (), 05, (). (2)
Node ¢ depends on the nodes j, namely on node ¢; and
i2. The functions used in this paper are a subset of those
classified as biological meaningful by Raeymakers [19].
The configuration of the system o = {o1,...,0n} per-
forms a trajectory in configuration space. As the state
space is finite and the dynamics is discrete, some states
will occur again. If a cycle in state space has a set of tran-
sient states leading to it, it is called an attractor.

2 Classification of the dynamics according
to Kauffman

We will now apply the classification rule of Kauffman to
our threshold networks. Then we will show that this clas-
sification breaks down for a certain range of values of the
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Table 1. The four possible update functions for the model
used in this paper. The input configuration is given in the first
column, with T denoting o; = 1 and | denoting o, = —1.
The top row gives the name of the function according to the
Kauffman model, the last row gives the probability for each
function.

Input fr fi fi3 fia
(L) 7 7 7 !
(1,1 T T ! T
) 7 1 7 7
(.1 ! T T T
probability (1—-p4)®  pr(1—-py) pi(l—pi) pf

parameter p;, and we will study in the next section in
more detail this parameter range, were global oscillations
oceur.

Let us first apply the criticality condition in its sim-
plest version: for all four update functions, the probability
that the output changes if one input spin is flipped, is 1/2.
Since each node is on average the input to two other nodes,
a perturbation at one node propagates on average to one
other node, and we should expect the model to be critical.
This is in agreement with the finding that K = 2-RBNs
that contain only canalyzing update functions (but all of
them with the same probability) are critical [20]. How-
ever, this simple argument is based on the assumption
that all four possible input configurations occur equally
often, which may be true at the beginning of a simulation
run, but may be wrong already after one timestep. For this
reason, Moreira and Amaral [21] argued that the calcula-
tion should be performed such that the input configura-
tions are weighted with their frequencies in the stationary
state. This type of calculation is explained in great detail
n [22]. A similar type of calculation was applied already
earlier to a lattice model, where the approximation is not
exact [23].

2.1 Perturbation propagation method

Let us therefore next apply the rule given by Moreira and
Amaral and let us determine for what values of p it pre-
dicts that the model is frozen, critical, or chaotic.

We denote with by the proportion of nodes in state
o; = +1 at time ¢. In the thermodynamic limit, it changes
deterministically according to

b1 =1- [th (1 *p+)2 +(1- bt)Qp?i-

+20; (1= be) py (1= p) |- (3)
The expression in the square brackets is the probabil-
ity that an input combination leads to s; = —2, which

yields an output —1. In the stationary state, we have
bt+1 = bt = b with

4p% —2py — 1+ /5 —12p, + 8p2

2(1—2p,)?

b(py) =
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The sign in the numerator has to be chosen such that
b € [0, 1], therefore only the positive branch remains, see
Figure 1. For p; = 1/2, the denominator vanishes, and the
stationary solution of equation (3) is b = 3/4. For py =1,
we have b = 0 and b = 1, with the first solution being
obviously unstable as it is destroyed by one node in the
state 0; = +1. The second solution is a stable fixed point
of the dynamics. For p, = 0, we have b = (=1 + 1/5)/2.
The mean number of nodes to which a perturbation
at one node propagates is in the stationary state given by
271, with 7 being the probability that a node changes its
state when one input is flipped. We obtain it by adding
together the probabilities for those input configurations
which allow a transition between an output +1 and —1
and vice versa. This is true for half of the input configu-
rations leading to s; = 0 (the first 4 terms in the follow-
ing equation) and for all input configurations for which
= —2 (the last 4 terms):

m = (L= p4)(1 = b)(1 — py)b+ pybpy (1 — D)
+p+b(1 —pi)b+ (1 —py)(1 = b)p4(1 - )
+(1 = p1)b(1 = p4)b+ p4b(1 —pi)(1 = b)
+(1 = p4)(L = b)p+b+pi(1 = b)p4(1 —b)
=m =b+py — 2bp;.

(5)

For py = 1/2, we obtain m = 1/2, for p; = 1, we obtain
m = 0. For py = 0, we obtain m; = b ~ 0.618. We
therefore conclude that the model is in the frozen phase
for p4 > 1/2, that it is critical for p; = 1/2, and chaotic
for p4 < 1/2.

2.2 Stationarity method

The same result is obtained by calculating the station-
ary value of the Hamming distance between two identi-
cal network realizations. The (normalized) Hamming dis-
tance between two configurations o, o is the fraction of
nodes that have different values in the two configurations:
D = (4N)"' 2N (0; — 5:)2. If we denote with 7y the
probability that a node changes its state when both in-
puts are flipped, the time evolution of D is given by

Dyiy1 = 2Dy(1 — Dy)my + Dims. (6)
The first term is the probability that exactly one input
changes, times the probability that the output flips. The
second term is the probability that both inputs change,
times the probability that the output flips.

The value of w5 in the stationary state is obtained by
summing all 8 combinations leading to s; € {+2}. It can
be written as

my =1 2b(1=2py)*+ 26°(1-2p1 )% = 2p4 + 297 (7)
and is 1/2 for p; = 1/2 and 1 for p; = 1. If D, is very

small, we have
D1 >~ 2Dy, (8)

which allows for the growth of a small perturbation if
271 > 1 or py < 1/2, in agreement with our result above.
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Fig. 1. The functions b(p+ ), 71(p+ ), m2(p+) and the stationary
value D(py) vs. p4.

The transition from a stationary value D = 0 to a station-
ary value D > 0 occurs at the same point.

Figure 2 shows D, for different values of p; and for
given initial conditions. One can see that D; approaches
0 for large times if p; > 0.5. Furthermore, one can see
that D; oscillates with period 2 for the smaller values of
p+. This oscillation is an indication that the dynamics in
the “chaotic” phase has some structure, which shall be
investigated in the following.

3 The nonfrozen regime

Let us have a closer look at the phase that was classi-
fied above as chaotic based on the evaluation of m at
the fixed point value of b. In fact, the dynamics is not
chaotic at all for sufficiently small p;. The reason is that
our calculations were based on the assumption that b be-
comes stationary for large times. In order to see that
this need not be the case, let us first look at the sit-
uation where p; = 0: We then have b1 = 1 — b7,

This is a one-dimensional map shown in Figure 3.
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Fig. 2. The time evolution of the Hamming distance D for
different values of p; when b is not stationary. The curves are
calculated according to equations (3, 6) starting from Do = 0.2
and by = 0.5.
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Fig. 3. The map b vs. byr1 = 1 — b? for p; = 0. The fixed
point b is unstable as depicted by a sample trajectory.

The fixed point is unstable, just as is found in specific
RBN models where all nodes are assigned the same func-
tion [13]. Instead of having a stationary point with a
constant proportion of nodes in the two states, the sys-
tem oscillates between a configuration where all nodes are
switched on and a state where all nodes are switched off.
This is not chaotic dynamics at all, but very stable dynam-
ics. In order to determine the range of p; values, for which
the fixed point value of b is unstable, we performed a lin-
ear stability analysis. The ansatz byy1(b+ 0b;) = b+ 0bst1
leads in linear order in db and for p; < 1/2 to

5bt+1 = -2 (bt (1 — 2p+)2 + (1 — 2p+)p+) (Sbt

= (1 — /5 —12py + 8p3_> by =t M - 8b,.  (9)

In the last step we used equation (4). The fixed point is
stable if the real part of M is smaller than 1, which is the
case if

Py > (3—V17)/4 = pe ~ 0.0886.

Only above this value does the system have a stationary
state with constant proportions of nodes being “on” and
“Oﬂ‘” .

(10)

3.1 Oscillations with period 2

We finally investigate in more detail the region p; < pep,
where the proportion of “on” and “off” nodes oscillates
with period 2. For p4y = 0, every node oscillates with pe-
riod 2, and we have a global attractor of period 2. This
need not necessarily be the case if b oscillates with pe-
riod 2. The attractor could be much larger, while the pro-
portion of off and on nodes oscillates still with period two.
In order to determine for which parameters an attractor
with period 2 is stable, we performed again a linear sta-
bility analysis, but now for two time steps together. We
assume that the system is on an attractor of length 2. Let
there be every even time step a proportion x of “on”-nodes
and every odd step a proportion y.

We flip one node and evaluate how the Hamming dis-
tance grows in comparison to the undisturbed system after
two time steps. The condition that a perturbation of one
node propagates on average to one other node after two
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time steps is equivalent to

1

mi(z) - m(y) = 7. (11)

Combining equation (11) with the time evolution of = and
y as given by equation (3), we obtain three equations

y=1-[2(1 = ps)* + (1 —2)°p + 20(1-2)p+(1 — py)]
o =1-[y* (1 —pi)? + (1 —)*p% + 2y(1—y)po(1 — py)]

1
1= @4 P = 2p)(y + pr = 2yp4).

This system can be solved numerically, and we obtain a
critical value p., = 0.0657. For py below this value a
perturbation at one node will die out and all nodes will
again oscillate with period 2. Above this value, attractors
must be longer than 2.

3.2 Numerical test

We checked these analytical predictions by performing
computer simulations. In order to identify the transition at
Pen, we measured the median attractor length. As shown
in Figure 4, we find with increasing network size an in-
creasingly sharp transition. Below the transition at pep,
the proportion of attractors of length 2 converges to some
nonzero value with increasing system size, indicating that
cycles of length 2 are stable. Above the transition, the
median attractor length increases more and more rapidly
with increasing system size, indicating a diverging median.
Another finding is that attractors become again shorter as
the critical point p; = 1/2 is approached.

The transition at p., is a transition from oscillating to
stationary behavior of by, which we have obtained in the
analytical calculation at the beginning of this chapter. In
order to see this transition also in our computer simula-
tion, we evaluated the frequency of phase jumps in b; on
the attractors. An oscillation with period 2 was identified
by observing that the value of b; alternated between be-
ing larger and smaller than its mean value (b). Deviations
from this regular oscillation are “phase jumps”, where b; is
two times in a row above or below the mean value. A finite
proportion of phase jumps means that the regular oscilla-
tion with period 2 ceases to exist and that the point pep
has been reached. The result is shown in the lower part of
Figure 4. With increasing system size, there is an increas-
ingly sharp transition at p., between zero phase jumps and
a finite proportion of phase jumps. In order to verify that
b becomes stationary above the transition, we also evalu-
ated its standard deviation Ab. We find that Ab decreases
with increasing system size above p., while it increases
below the transition. For instance, for networks with only
100 nodes we obtained Ab < 0.1 for p4 > 0.15. This find-
ing agrees with our analytical result that b is constant in
time above pgp.

4 Conclusion

To conclude, we have shown that the simplest Thresh-
old Random Boolean Network shows three different types
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Fig. 4. Numerical verification for the transition p., and pcp,
both marked by vertical arrows. The upper panel shows the
median attractor length, the lower panel the median frequency
of phase jumps on each attractor candidate in dependence of
p+. Each data point corresponds to 5000 sample networks of
size N with fixed p;+ and two initial conditions per realization.
Sampling the entire state space is impossible already for net-
works much smaller than the N considered here. This means
that attractors are weighted with the size of their basin of at-
traction. The time evolution is limited to 5000 computational
steps for both the transient and the attractor length, in order
to keep the overall simulation time within reasonable limits.
This makes it impossible to calculate mean attractor lengths,
therefore the median was evaluated.

of phase transitions and not just the generally expected
transition between a frozen and a chaotic phase. For pa-
rameter values p; < pen, all nodes oscillate stably with
period two. For p., < p+ < pep, the fraction of on-nodes
oscillate with period two, but attractors are longer. For
Peb < P4+ < 1/2, the dynamical behavior is chaotic in the
sense defined by Kauffman. For p; > 1/2, the network is
in the frozen phase.

We summarize the different types of dynamical behav-
ior in the following diagram, Figure 5.

nonfrozen frozen

b has period 2 b is constant in time

all nodes have
period 2

nodes oscillate differently or not at all

0.5

P+ Pen Deb

Fig. 5. Overview of the dynamic behavior of the model with
K = 2 in dependence of the parameter p;.

The lesson to be learned from this study is that the
dynamical behavior of RBNs can be much richer than ex-
pected from simple considerations. Some RBNs may show
global oscillations with higher periods or period doubling
cascades in the temporal behavior of b;, as was found in
special networks where all nodes with the same number of
inputs are assigned the same function. Even more inter-
estingly, within a regime with a fixed oscillation period of
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the number of “on” nodes, further phase transitions can
be hidden, as we have seen in this paper.

Real genetic networks might therefore also have a
richer dynamical behaviour than the dynamical classes
identified by Kauffman. If the simple classification into
“frozen”, “critical” and “chaotic” networks fails already
in the random threshold model presented in this paper, it
will be even less suitable for real genetic networks, which
have attractors with very specific properties related to the
function of the network. Also a characterization by the
temporal behaviour of the proportion of “on” nodes will
not be sufficient. A more sophisticated way of describing
and classifying the dynamical behavior of Boolean net-
works is therefore required.

This work was supported by the Deutsche Forschungsgemein-
schaft (DFG) under Contract No. Dr200/4-1.
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